Prepared on: 09/04/2019 by Flood Team

General weather patterns:

No critical weather situation over the Lower Mekong Basin, during this week from 02nd to 08th April 2019. From 02nd to 08th April 2019, water levels along the lower Mekong River from Thailand’s Chiang Saen to Lao PDR’s Luang Prabang were continuing to stay above their long-term averages (LTAs) and even higher than previous years (2017-2018), although no rainfall in these areas. It was observed that the trend of water levels at these stations have been raised up since 27th March 2019 and continuing to stay above their LTAs. The same trends for downstream reaches from Lao PDR’s Vientiane to Cambodia’s Kompong Cham, water levels were stay above their LTAs. The lower reaches from Cambodia’s Phnom Penh at Chaktomuk, Koh Khel and Neak Luong were slightly increasing and stay above their LTAs due to some rainfall in early April 2019. For Viet Nam’s Tan Chau on the Mekong River and Chau Doc on the Bassac River, water levels were fluctuated over their LTAs but tracking in different trend, compared to previous years.

General behavior of the Mekong River:

From 02nd to 08th April 2019, water levels along the lower Mekong River from Thailand’s Chiang Saen to Lao PDR’s Luang Prabang and Thailand’s Chiang Khan were still continuing rising above their long-term averages (LTAs), although the trends were gone down. As observed, water level at Luang Prabang were higher than previously recorded after the wet season ended in November 2018. The rising water level is still rising up in this month (April 2019). Because there was no heavy rainfall effected and inflow from Chiang Saen is experiencing the same trend, this rising water level at Luang Prabang could be suggested the backwater of Xayaburi’s reservoir impoundment.

The forecasted trend from 09th to 15th April 2019 at Chiang Saen to Luang Prabang will be decreasing due to the outflows from the Jinghong hydropower dam will regulate to decrease from 2,000 – 3,000 (m³/s) to 1,500 – 1,600 m³/s. The decrease of water will be made to accommodate “the traditional activities on the Lancang (Mekong) River during the Water Splashing Festival of the Dai ethnic group,” the notification said.

The trends were the same for the stations from Lao PDR’s Vientiane to Cambodia’s Kompong Cham at the same time as upstream. Water level at the lower stations from Cambodia’s Phnom Penh at Chaktomuk to Neak Luong were slightly increased over their LTAs. However, the tidal stations at Viet Nam’s Tan Chau on the Mekong River and Chau Doc on the Bassac River were fluctuating over their LTAs. As observed, there were different tidal trend of these 02 stations. It is needed to discuss and find out for justification of this changing.

For stations from Chiang Saen and Luang Prabang

Water levels from 02nd to 08th April 2019 at Chiang Sean and Luang Prabang stations were stayed above their long-term averages (LTAs). From 09th to 15th April 2019, water levels at these 02 stations will be decreased from 0.70 meter to more than 1 m due to the regulation of hydropower dam at the Jinghong Station from 11th to 20th April 2019.

Since last year 2018, the water level at Lao PDR’s Luang Prabang rise over their historical long-term averages, based on the observed water level monitoring provided by Department of Hydrology and Meteorology (DMH). It showed the higher levels than previously historical maximum water level recorded from 2010 to 2018. The cause of abnormal rise of water level at Chiang Saen are likely caused by experience of hydropower operation upstream in the Southern Yunnan province of China during the Dry Season period. This inflow from Chiang Saen could be affected to the raised water levels at Luang
Prabang and Chiang Khan stations (approximal 2 days travelling time of flows from Chiang Saen). However, the continuing rise water level on the Mekong mainstream to date at Luang Prabang is not likely effected by inflows from upstream or rainfall in the catchment. This raising up water level not due to high rainfall in the Upper Mekong Basin but rather a consequence of an increase of water impounding of hydropower downstream and other inflows from tributaries upstream of Luang Prabang. It is needed to discuss among relevant stakeholders (MRCS, DMH and Xaiyaburi) for further detail information to find out what are the most influent inflows for this station and the solution.

For stations from Chiang Khan, Vientiane-Nong Khai and Paksane
Water levels from 02nd to 08th April 2019 at Chiang Khan, Vientiane, Nong Khai and Paksane were decreased the same trend as upstream and stayed above their LTAs. The water levels will be decreasing the same trends as upstream inflows. It has been observed that since December 2018, the water level at Lao PDR’s Paksane raised up contently over its historical long-term averages, based on the observed water level data provided by Department of Hydrology and Meteorology (DMH). It showed the higher levels than previously historical water level recorded from 2010 to 2018. The raising water levels are not likely caused by rainfall in the upper Mekong Basin, but effected by a consequence of inflows from upstream and tributaries in the catchment. Based on the information provided by DMH, the rising trend of water level at Pakane may causes by the Nam Ngum hydropower dam operation during the dry season. It is needed to discuss among the relevant stakeholders for further detail information to find out what are the most influent inflows for this station.

For stations from Nakhon Phanom to Pakse
Water levels from 02nd to 08th April 2019 at Nakhon Phanom to Pakse were still increasing above their LTAs and will keep the same trend as upstream. Water levels at these stations will be gradually decreasing the same trends as upstream part.

For stations from Stung Treng to Kratie
Water levels from 02nd to 08th April 2019 at Stung Treng to Kratie were also increased slightly above their LTAs. Water levels at these stations will be decreasing the same trends as upstream part.

For stations from Kompong Cham, Phnom Penh to Prek Kdam
Water levels from 02nd to 08th April 2019 at Kompong Cham down to Chaktomuk on the Bassace and Prekdam on the Tonle Sap were slightly increased and raised above their long-term averages (LTAs) due to some rainfall in this week over the Mekong floodplain area.

Tan Chau and Chau Doc
Water levels from 02nd to 08th April 2019 at Tan Chau on the Mekong and at Chau Doc on the Bassac were fluctuated over their long-term averages (LTAs). As observed, there were different tidal trend of these 02 stations. It is needed to discuss and find out for justification of this changing.

Conclusion
From 02nd to 08th April 2019, the trend of water levels at Chiang Sean was decreased and will impact to downstream reach to the Cambodia’s Kratie.

According to the MRC’s observed and forecasting water level, Thailand’s Chiang Saen may see approximately 0.70 meter to more than 1m of the decrease of water level due to the decrease of the water flow from the Jinghong hydropower station during 12 – 21 April 2019.

But the flow changes in the lower reaches of the Mekong mainstream may not become obvious or cause any significant impact on the River or people from 13 to 30 April.

Some stations, including those from Lao PDR’s Luang Prabang to Cambodia’s Kratie, are on the other hands experiencing water decrease between 0.50 and 1.50 meters during 13 to 30 April 2019. But no worrying trends are detected.
Based on a hydrological phenomenon, the inflow contribution of water from the upstream of Lancang-Mekong in China to the Mekong mainstream is about 20% in total during the dry season from November to May. The whole inflow of water into the lower Mekong basin is influenced more by tributaries and a direct rainfall distribution.

The abnormal raised water levels at Luang Prabang and Paksane were impacted by the impounding hydro-power at Xaiyaburi and the Dam operation at Nam Ngum. It is needed to further investigate and discuss among the relevant stakeholder (MRCS, DMH and Hydro-per dam companies) about the reasons cause of these rising water levels and solution.

In general, water levels in the Mekong mainstream are staying above their LTAs, although there are reported of water shortage in the nearby area of the Mekong.

On the other hand, the hydrological conditions (rainfall and flows) of the Mekong River during early dry season 2019 (Jan to April) is characterized as high flow, compared to the long-term average. This caused a high-water level in the mainstream and many tributaries in rainfed watershed areas of the Lower Mekong Basin are likely caused by experience of hydropower operation upstream in the Southern Yunnan province of China during the Dry Season period and the abnormal rainfall in March in the floodplain area.

Dry season situation

On the other hand, drought risk cause of water shortage depends upon with the severity or 'intensity' of a drought (as measured by its likelihood of occurrence of rainfall, stream flow and soil moisture deficits) and the effecting of El Niño conditions in the focused area. Water shortage is likely dependent on water resources management strategy, including infrastructures of reservoir and cannel system and water supply facilities of each country.

Based on the information from the International Research Institute for Climate and Society (IRICS) and the Japan Meteorological Agency (JMA), the consensus of ENSO prediction models indicated that strong El Niño conditions is continuing during the Dry season from Jan-May 2019 in the Mekong Region.

The current water levels from upstream at Chiang Saen to the downstream stations in Cambodia of the Mekong river system are rising above their LTAs. If there will be significant rainfall over the region in early May 2019, the is expecting water levels in the Mekong River System will rise quickly that may causes flood in region.

For details information on water levels and rainfall at each key station are described as follows:
- Tables for observed water levels and rainfall for the last week in Annex A
- The water levels graphs showing the observed water levels for the season in Annex B
Annex A: Graphs and Tables

Table A1: Observed water levels

<table>
<thead>
<tr>
<th>2019</th>
<th>Jinghong</th>
<th>Chiang Saen</th>
<th>Luang Prabang</th>
<th>Chiang Khan</th>
<th>Vientiane</th>
<th>Nongkhai</th>
<th>Pakse</th>
<th>Nakhon Phanom</th>
<th>Mukdahan</th>
<th>Pakse</th>
<th>Stung Treng</th>
<th>Kratie</th>
<th>Kompong Cham (Phnom Penh) (Bassac)</th>
<th>Koh Khel</th>
<th>Neak Luong</th>
<th>Prek Kdam</th>
<th>Tan Chau</th>
<th>Chau Doc</th>
</tr>
</thead>
<tbody>
<tr>
<td>02/04/2019</td>
<td>-</td>
<td>4.01</td>
<td>9.10</td>
<td>6.69</td>
<td>2.60</td>
<td>3.21</td>
<td>4.75</td>
<td>2.63</td>
<td>2.87</td>
<td>1.98</td>
<td>3.11</td>
<td>8.26</td>
<td>3.66</td>
<td>2.04</td>
<td>1.99</td>
<td>1.96</td>
<td>1.13</td>
<td>0.84</td>
</tr>
<tr>
<td>03/04/2019</td>
<td>-</td>
<td>4.16</td>
<td>9.10</td>
<td>6.92</td>
<td>2.90</td>
<td>3.42</td>
<td>4.81</td>
<td>2.64</td>
<td>2.85</td>
<td>2.00</td>
<td>3.11</td>
<td>8.20</td>
<td>3.64</td>
<td>2.03</td>
<td>1.98</td>
<td>1.72</td>
<td>1.12</td>
<td>0.98</td>
</tr>
<tr>
<td>04/04/2019</td>
<td>-</td>
<td>4.20</td>
<td>9.44</td>
<td>6.86</td>
<td>3.15</td>
<td>3.73</td>
<td>4.95</td>
<td>2.65</td>
<td>2.85</td>
<td>2.00</td>
<td>3.10</td>
<td>8.31</td>
<td>3.64</td>
<td>2.08</td>
<td>2.06</td>
<td>1.66</td>
<td>1.15</td>
<td>1.06</td>
</tr>
<tr>
<td>05/04/2019</td>
<td>-</td>
<td>4.09</td>
<td>9.39</td>
<td>6.82</td>
<td>3.15</td>
<td>3.78</td>
<td>5.20</td>
<td>2.71</td>
<td>2.88</td>
<td>1.96</td>
<td>3.09</td>
<td>8.33</td>
<td>3.70</td>
<td>2.13</td>
<td>2.12</td>
<td>1.60</td>
<td>1.22</td>
<td>1.05</td>
</tr>
<tr>
<td>06/04/2019</td>
<td>-</td>
<td>4.04</td>
<td>9.57</td>
<td>6.82</td>
<td>3.10</td>
<td>3.74</td>
<td>5.25</td>
<td>2.84</td>
<td>2.96</td>
<td>1.98</td>
<td>3.05</td>
<td>8.29</td>
<td>3.76</td>
<td>2.18</td>
<td>2.20</td>
<td>1.64</td>
<td>1.26</td>
<td>1.14</td>
</tr>
<tr>
<td>07/04/2019</td>
<td>-</td>
<td>3.98</td>
<td>9.47</td>
<td>6.98</td>
<td>3.05</td>
<td>3.70</td>
<td>5.22</td>
<td>2.95</td>
<td>3.07</td>
<td>1.96</td>
<td>3.07</td>
<td>8.18</td>
<td>3.72</td>
<td>2.19</td>
<td>2.33</td>
<td>1.52</td>
<td>1.28</td>
<td>0.78</td>
</tr>
<tr>
<td>08/04/2019</td>
<td>-</td>
<td>3.80</td>
<td>9.63</td>
<td>7.06</td>
<td>3.25</td>
<td>3.82</td>
<td>5.16</td>
<td>2.96</td>
<td>3.12</td>
<td>1.96</td>
<td>3.07</td>
<td>8.18</td>
<td>3.66</td>
<td>2.21</td>
<td>2.24</td>
<td>1.52</td>
<td>1.28</td>
<td>0.50</td>
</tr>
</tbody>
</table>

Table A2: Observed rainfall

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>02/04/2019</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>20.7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>24.1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>03/04/2019</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>12.6</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>04/04/2019</td>
<td>-</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1.5</td>
<td>53.6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10.5</td>
<td>0</td>
</tr>
<tr>
<td>05/04/2019</td>
<td>-</td>
<td>0</td>
<td>29.6</td>
<td>0</td>
<td>2.9</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>06/04/2019</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>13.7</td>
<td>2.1</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>07/04/2019</td>
<td>-</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>08/04/2019</td>
<td>-</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Unit: m

Unit: mm

Note: No data available from China during the Dry Season
Annex B: Season Water Level Graphs

This Annex has the water level graphs of the report date. These graphs are distributed weekly by email together with the River Monitoring Bulletin.

HYDROGRAPH AT 7 AM OF MEKONG TONLE SAP AND BASSAC AT MAINSTREAM STATIONS IN DRY SEASON FROM 02 TO 08 APRIL 2019

Water Level of Mekong at Chiang Saen

Water Level of Mekong at Luang Prabang
Tuesday, 09th April 2019

Water Level of Mekong at Chiang Khan

Water Level of Mekong at Vientiane

Water Level of Mekong at Nong Khai